Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation
نویسندگان
چکیده
Previous studies have shown that the translation level of in vitro transcribed messenger RNA (mRNA) is enhanced when its uridines are replaced with pseudouridines; however, the reason for this enhancement has not been identified. Here, we demonstrate that in vitro transcripts containing uridine activate RNA-dependent protein kinase (PKR), which then phosphorylates translation initiation factor 2-alpha (eIF-2α), and inhibits translation. In contrast, in vitro transcribed mRNAs containing pseudouridine activate PKR to a lesser degree, and translation of pseudouridine-containing mRNAs is not repressed. RNA pull-down assays demonstrate that mRNA containing uridine is bound by PKR more efficiently than mRNA with pseudouridine. Finally, the role of PKR is validated by showing that pseudouridine- and uridine-containing RNAs were translated equally in PKR knockout cells. These results indicate that the enhanced translation of mRNAs containing pseudouridine, compared to those containing uridine, is mediated by decreased activation of PKR.
منابع مشابه
Human Interferon-γ mRNA Autoregulates Its Translation through a Pseudoknot that Activates the Interferon-Inducible Protein Kinase PKR
PKR, an interferon (IFN)-inducible protein kinase activated by double-stranded RNA, inhibits translation by phosphorylating the initiation factor eIF2alpha chain. We show that human IFN-gamma mRNA uses local activation of PKR in the cell to control its own translation yield. IFN-gamma mRNA activates PKR through a pseudoknot in its 5' untranslated region. Mutations that impair pseudoknot stabili...
متن کاملEffect of Activation and Inhibition of Cellular PKR on Coxsackievirus B3 Replication
The ds-RNA activated protein kinase (PKR) is a serine-threonine kinase with MW of 68 KDa. It belongs to a family of kinases that control one of the translational initiation factors, eIF2. PKR is produced at high level in response to viral infection. This protein by phosphorylating eIF2 inhibits cellular protein synthesis. In this study, the effect of gamma interferon (IFN-γ), an activator, and ...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملA cis-acting element in the 3'-untranslated region of human TNF-alpha mRNA renders splicing dependent on the activation of protein kinase PKR.
We report a role for the 3'-untranslated region in control of mRNA splicing and show that human TNF-alpha 3' UTR harbors a cis-acting element that renders splicing of precursor transcripts dependent on activation of PKR, the RNA-activated protein kinase that phosphorylates eukaryotic initiation factor 2 (eIF2). When this element, designated 2-APRE, is present, splicing becomes sensitive to inhi...
متن کاملDynamic refolding of IFN-gamma mRNA enables it to function as PKR activator and translation template.
Interferon-gamma mRNA activates the RNA-dependent protein kinase PKR, which in turn strongly attenuates translation of interferon-gamma mRNA. Unlike riboswitches restricted to noncoding regions, the interferon-gamma RNA domain that activates PKR comprises the 5' UTR and 26 translated codons. Extensive interferon-gamma coding sequence is thus dedicated to activating PKR and blocking interferon-g...
متن کامل